跳到主要內容

有趣的動畫,大家一起解解看!



這是我前幾天收到的轉寄信,
內容如下: 

===================================================== 

>>> 太神奇了,好好看看
>>>
>>> 每個人看來都是不一樣的
>>>
>>> 順時針的話, 屬於是用右腦較多的類型
>>> 逆時針屬於左腦叫多的類型
>>> 大部分人的眼裡裡是逆時針方向轉動, 但也有人看來是順時針方向轉動的.
>>> 順時針的情況, 女性比男性多~
>>> 逆時真轉動的, 突然變成順時針的話, IQ是160以上!!!
>>>
>>> 試試吧!~~~

 

 ===================================================== 

有趣的是我在看的時候的確發現它會有由右向左(順時)與由左向右轉(逆時)的情況會出來,
(基本上我並不認為這跟智商有什麼關係)

第一個直覺是它可能在GIF動畫製作時加入了相反的影格進去,
透過影格錯置的方法來影響視覺。 

但有趣的是我用GIF分析軟體(Ulead GIF Animator)分析這個GIF檔,
發現它的確僅僅只有使用34個影格製作出的連續動畫, 


但確實還是可以很明顯的發現不太協調的地方,
像逆時旋轉時(由左往右),人物是揮舞"左手"
但順時旋轉時(由右往左),人物卻是揮舞"右手"

這代表它並不是將影格反轉(倒帶),由最後一個影格撥到第一個影格,
因為反轉的方式雖然會呈現順時旋轉(原本是逆時),但揮舞的仍舊是人物的"左手"

所以既然它會反向的旋轉卻又會換手,那理由應該只有圖像被鏡射(Mirror)所產生
如下圖由其中一個影格所製作的Mirror : 

 

 

另外為求正確性以避免是動畫檔做假,
我用SnagIt畫面截取軟體將動畫側錄成影片檔,但仍可以發現左右旋轉的機會。

 

 

不過文章打到這,剛好哥哥的女友經過,
在她的驗證下,
她說她看到的全都是順時針方向(由右往左轉,右手揮舞),
我所看到的卻會是會突然變化成往逆時針方向(同時變成左手揮舞,狀況就如Mirror一樣),

重點是同樣的時間地點下,她看到的跟我看到的卻是不一樣的結果,
是否這真的與習慣性使用左右腦的關聯嗎?

而我哥女友是左撇子,所以應該是右腦思考,
這點也符合信中所說 "順時針的話, 屬於是用右腦較多的類型"

但經過與她這樣比對後,
不知道是不是我看太久,現在會有亂轉的現象產生,一整個左右亂轉,
而且方向轉換頻率比之前高,時間也縮短很多。

 
如果方向真的跟大腦左右腦的使用上有關的話,
由頻率縮短這件事,似乎可以推論左右腦的使用是可以訓練的。

大家試試看吧。

不過我還是很好奇究竟這個原理的理論是什麼,
不管真的是跟大腦有關,或許只是一種視覺欺騙,亦或只是動畫技巧,有時間可以研究一下呢
若有人知道或有什麼想法也麻煩跟我說一下唷。



                                                        BP  2007-08-16


留言

這個網誌中的熱門文章

醫學健康跨領域合作的開始:資料工程

一直都很喜歡在會議上與跨領域的專家、醫師、學者分享我們在數據工程與分析應用上的發展經驗。 許多的專家學者,對於大數據應用的認知都仍侷限在一個超大型結構化資料集的子集合應用,在規劃好的條件設定下,針對特定的目標(疾病、行為)進行篩選,將數據narrow down到可以被個人電腦或是單一伺服器架構處理的小型資料集。 這樣的半手工處理方式,對於專一(Specific)領域主題的資料追蹤計算或許已經十分足夠,但當中倘若資料清理方式有改變、篩選條件增減,所有的數據都要從raw重新處理,不僅造成大量的時間與人力浪費,對於專案計畫進度的延宕更是麻煩。這些還不包含

Google 資料庫方案–Spreadsheet–(1)資料呈現

HEMiDEMi 的標籤: Google , Google SpreadSheet , 雲端 早在規劃『 教育,意義! 』project時, 便有打算將整個網站建立過程撰寫一篇教學,讓有興趣以google 服務為基礎進行開發的朋友參考。 沒想到這個想法擺著就拖了好幾個月, 好在學生提出了問題,就趁這機會寫一寫吧。 基本上『 教育,意義! 』網站的架構完全建立在Google提供的服務, 廣義來說也是個雲端的系統, 所有的資料是分散在不同的服務架構下,再用GAE, Javascrript將服務資訊串接起來, 由Blogspot 統一呈現。 省了租主機的費用,或架站的硬體、電費, 最好的地方在於不用管理主機維運的問題, 只要專心做我的創意、嘗鮮就好了!!   多棒! 若將『 教育,意義! 』網站依功能層次來分類,可以分為三層結構, 當中的層次與使用技術大致如下: UI 介面層 服務 : Blogspot (網站介面) , Picasa (相簿空間), Google Apps 技術 : Javascript , AJAX ( JQuery ) App應用層  服務 : Google App Engine (GAE) 技術 : Java, Java Server Page (JSP) 資料層 服務 : Google Docs (文件), Google Spreadsheet (試算表) 技術/函式庫 : Java, Google Data APIs 本篇文章將著重在介紹以Google Spreadsheet 做為雲端資料庫, 其他主題將會陸續推出。 若對Google API 與 Google App Engine 初步建置有興趣, 可以參考之前文章: 佛心來著的 Google Data API – for JAVA 雲端的開始:Netbeans 無痛 Google App Engine Java 服務開發 Google Spreadsheet 做為資料庫系統 對於小型的資料系統來說, 採用Google Spreadsheet做為應用程式資料庫(如問卷調查或線上系統) 也算堪用, 目前的儲存限制為 : 40 萬個儲存格 每張工作表最多...

當咒術成真 - 文字生成的虛擬世界

  2024/02  這幾天灌爆各大ai社群的,不外乎就是文字生成高清畫質影像的OpenAI Sora , 讓人驚艷的細膩表現,自動化的場景生成與運鏡效果,縱使這個概念並不是多創新的模式,但Open AI始終很懂得抓住大家眼球  (Sora的各種生成影片: https://openai.com/sora  ) 關於Sora 的技術與介紹,不妨看看chatGPT 對它的描述: OpenAI Sora文字-視訊生成模型 在視頻數據上進行大規模訓練生成模型,具體而言,OpenAI聯合訓練了文本條件擴散模型,處理不同持續時間、解析度和長寬比的視頻和圖像。利用了一種在視頻和圖像潛碼的時空塊上操作的轉換器架構。受到Srivastava等人(2015年)在使用LSTMs進行視頻表示學習的無監督學習的啟發,OpenAI的最大模型Sora擴展了這些概念,能夠生成一分鐘的高保真度視頻。此外,Chiappa等人(2017年)描述的循環環境模擬器方法與我們的方法論框架相一致,表明擴大視頻生成模型的規模是建立通用物理世界模擬器的一條有希望的道路。 一、技術創新 OpenAI 的 Sora 模型在技術創新上主要融合了 diffusion models 與 transformer models 的特點,這一結合代表著從文字描述到視覺內容生成的一大進步。根據 Goodfellow et al. (2014) 的研究,Generative Adversarial Nets (GANs) 開創了使用機器學習生成圖像的新方法,而 diffusion models 則透過逆向的擴散過程從隨機噪聲中逐步建構出有意義的圖像,提供了一種不同於傳統 GANs 的新途徑。另一方面,Vaswani et al. (2017) 提出的 transformer 模型,通過其自注意力機制有效處理長距離依賴關係,已廣泛應用於語言模型中。Sora 模型的創新之處在於將這兩種技術融合應用,實現了從簡單文本提示生成高質量視覺內容的能力,這不僅展示了機器學習技術的新高度,也為未來的影像生成、自然語言處理和人機交互開啟了新的可能性。 二、物理現象與現實世界的模擬 Sora 的另一大進步是在模擬現實世界物理現象方面的表現。雖然現有模型如 Raissi et al. (2019) 所提出的 Physi...