跳到主要內容

記憶中的司圖加特與臺灣

R0206861 

以下摘自:台灣環境資訊協會 –『 德鐵地下化正反激辯 樹立重大建設公民參與典範 』

『   國光石化日前召開第三次環評專案小組會議時,環團終於按捺不住於議程前質問主席:為什麼每次會議,開發單位總是沒有準備足夠數量的簡報給予與會民眾?事實上,近年重大開發案件,從蘇花改、中科三期到近日沸沸揚揚的大城八輕,資訊不透明以及拒絕對話的公部門,早已成為眾矢之的。尤其是創下史上最快通過(22天)蘇花改環評,缺乏行政聽證、沒有公民參與,更有所謂不對外開放的「閉門會議」,在爭議未解的情況下,卻表示「無重大爭議」通過環評。

反觀最近德國司圖加特(Stuttgart)的鐵路地下化計畫,預計施工時程長達10年,伴隨噪音、揚塵與大型工程車出入問題,恐又破壞具有600年歷史的古蹟公園與都市綠地,於政府與鐵路公司協商之初,便有市民團體提出異議。今年更爆發流血衝突,觸發10萬人的遊行抗議。面對龐大民意壓力,政府單位如何應對?司徒加特鐵路地下化計畫的經驗,重大建設公民參與觸發了截然不同的結果,相當值得參考     …………………….    』 

 

R0206868

 

記憶裡的司圖加特中央車站( Stuttgart Hbf ),
雖然僅僅是20分鐘的停留,卻依稀記得它老舊的頂架與帶著歷史痕跡的外牆。


那天人潮並不擁擠,
但南德氣候縱使在盛夏的七月仍是讓人直打哆嗦,
車站內一如大多德國車站般,總有三兩鴿子信步而走,
我想,說它擁擠、旅客匆忙,或許是國外記者沒來上班時的台北捷運看過,
那種沙丁魚專送般的運輸系統。


如今看到這篇文章,看到民眾與政府交鋒的「S21調解會」(Schlichtung S21),
讓僅僅只是過客的我,也因為曾站上這樣民主勝利的場域,感到與有榮焉。
 

在外國人的眼裡,臺灣人民是和善、熱情的,
諷刺的是,政治環境給我們的境教,是對立、衝突、彼此攻訐!
這樣非死即傷的對立,把所有事情一股惱的兩極化,
我們失去了天性的和善更摒棄了過去通達無為的文化思想,
結果造就這零和的環境。

 

理盲、濫情,
這真是再貼切不過的形容。

 

面對未來的路途,
我們該學習放下成見,用更聰明的角度看待每一件事,
不是用政客的角度、媒體的角度,而且是用我們自己的雙眼,
相信我們親眼看到的事實,並且以社會利益為前提支持它。

或許,當大家都以這樣的姿態去訴求時,
再多的思維衝撞、再多的多元立場,
終將妥協出一個最棒的平衡點,

 

一個對你我他都欣然接受的聰明結果。

 

我期待那天的到來!

 

 

BP  2010.12.10

留言

這個網誌中的熱門文章

醫學健康跨領域合作的開始:資料工程

一直都很喜歡在會議上與跨領域的專家、醫師、學者分享我們在數據工程與分析應用上的發展經驗。 許多的專家學者,對於大數據應用的認知都仍侷限在一個超大型結構化資料集的子集合應用,在規劃好的條件設定下,針對特定的目標(疾病、行為)進行篩選,將數據narrow down到可以被個人電腦或是單一伺服器架構處理的小型資料集。 這樣的半手工處理方式,對於專一(Specific)領域主題的資料追蹤計算或許已經十分足夠,但當中倘若資料清理方式有改變、篩選條件增減,所有的數據都要從raw重新處理,不僅造成大量的時間與人力浪費,對於專案計畫進度的延宕更是麻煩。這些還不包含

Google 資料庫方案–Spreadsheet–(1)資料呈現

HEMiDEMi 的標籤: Google , Google SpreadSheet , 雲端 早在規劃『 教育,意義! 』project時, 便有打算將整個網站建立過程撰寫一篇教學,讓有興趣以google 服務為基礎進行開發的朋友參考。 沒想到這個想法擺著就拖了好幾個月, 好在學生提出了問題,就趁這機會寫一寫吧。 基本上『 教育,意義! 』網站的架構完全建立在Google提供的服務, 廣義來說也是個雲端的系統, 所有的資料是分散在不同的服務架構下,再用GAE, Javascrript將服務資訊串接起來, 由Blogspot 統一呈現。 省了租主機的費用,或架站的硬體、電費, 最好的地方在於不用管理主機維運的問題, 只要專心做我的創意、嘗鮮就好了!!   多棒! 若將『 教育,意義! 』網站依功能層次來分類,可以分為三層結構, 當中的層次與使用技術大致如下: UI 介面層 服務 : Blogspot (網站介面) , Picasa (相簿空間), Google Apps 技術 : Javascript , AJAX ( JQuery ) App應用層  服務 : Google App Engine (GAE) 技術 : Java, Java Server Page (JSP) 資料層 服務 : Google Docs (文件), Google Spreadsheet (試算表) 技術/函式庫 : Java, Google Data APIs 本篇文章將著重在介紹以Google Spreadsheet 做為雲端資料庫, 其他主題將會陸續推出。 若對Google API 與 Google App Engine 初步建置有興趣, 可以參考之前文章: 佛心來著的 Google Data API – for JAVA 雲端的開始:Netbeans 無痛 Google App Engine Java 服務開發 Google Spreadsheet 做為資料庫系統 對於小型的資料系統來說, 採用Google Spreadsheet做為應用程式資料庫(如問卷調查或線上系統) 也算堪用, 目前的儲存限制為 : 40 萬個儲存格 每張工作表最多...

當咒術成真 - 文字生成的虛擬世界

  2024/02  這幾天灌爆各大ai社群的,不外乎就是文字生成高清畫質影像的OpenAI Sora , 讓人驚艷的細膩表現,自動化的場景生成與運鏡效果,縱使這個概念並不是多創新的模式,但Open AI始終很懂得抓住大家眼球  (Sora的各種生成影片: https://openai.com/sora  ) 關於Sora 的技術與介紹,不妨看看chatGPT 對它的描述: OpenAI Sora文字-視訊生成模型 在視頻數據上進行大規模訓練生成模型,具體而言,OpenAI聯合訓練了文本條件擴散模型,處理不同持續時間、解析度和長寬比的視頻和圖像。利用了一種在視頻和圖像潛碼的時空塊上操作的轉換器架構。受到Srivastava等人(2015年)在使用LSTMs進行視頻表示學習的無監督學習的啟發,OpenAI的最大模型Sora擴展了這些概念,能夠生成一分鐘的高保真度視頻。此外,Chiappa等人(2017年)描述的循環環境模擬器方法與我們的方法論框架相一致,表明擴大視頻生成模型的規模是建立通用物理世界模擬器的一條有希望的道路。 一、技術創新 OpenAI 的 Sora 模型在技術創新上主要融合了 diffusion models 與 transformer models 的特點,這一結合代表著從文字描述到視覺內容生成的一大進步。根據 Goodfellow et al. (2014) 的研究,Generative Adversarial Nets (GANs) 開創了使用機器學習生成圖像的新方法,而 diffusion models 則透過逆向的擴散過程從隨機噪聲中逐步建構出有意義的圖像,提供了一種不同於傳統 GANs 的新途徑。另一方面,Vaswani et al. (2017) 提出的 transformer 模型,通過其自注意力機制有效處理長距離依賴關係,已廣泛應用於語言模型中。Sora 模型的創新之處在於將這兩種技術融合應用,實現了從簡單文本提示生成高質量視覺內容的能力,這不僅展示了機器學習技術的新高度,也為未來的影像生成、自然語言處理和人機交互開啟了新的可能性。 二、物理現象與現實世界的模擬 Sora 的另一大進步是在模擬現實世界物理現象方面的表現。雖然現有模型如 Raissi et al. (2019) 所提出的 Physi...