跳到主要內容

給特立獨行的你們

F1010014


Hi   ..

我是潘老師。

很遺憾最後還是沒有等到你的報告,
我覺得很可惜,我以為你會爭一口氣。
不過課都結束了,往前看吧。

我欣賞有想法的學生,你是其中一個,
在我的認知裡,一個團體中特立獨行的學生,
往往都有自己強烈的主見想法,
所以他們不太參與課程,因為沒興趣、甚至瞧不起老師,
這種人,其他老師視為眼中釘,但我反而最感興趣,
因為這些同學,才是最有創造力的學生。

現在,我想跟你講的,不是要你怎麼去專心在課業,
這不是重點,因為我相信連你都不確定唸這科系是不是你的志業,
我只希望你找到自己的方向,不要浪費你最寶貴的時間。

你是有想法的人,
但就我感覺的你,是渾渾噩噩過著茫茫的生活,
這不是你的錯,而是你走的不是自己想要的路。

人生苦短,
我認為你必定有你一片海闊天空,
只是當下的你還不知道、甚至還沒開始尋找!

加油!!
希望你試著去做你真正喜歡的事情,
然後義無反顧把它做到最好,並且當成你的志業。
當你真正緊抓住你想要的方向時,
我跟你保證,你會比現在更快樂、更充實,
而且開始體驗到那飄渺的人生意義究竟為何!
(這對現在的你想必是空洞茫然的?)

開始為自己尋找方向吧!
給自己一個期許,給自己一個未來,
將來,也讓老師刮目相看!!!

BP

=========================================

以上,是寫給同學的一封信,
突然覺得,這一部份的心聲應該分享給所有同學們,
因為好多有趣的同學,卻都過著茫茫然的生活,
真的很可惜。

不過請不要誤會我是偏心的老師,
我喜歡特立獨行的同學、安份守己的同學,也喜歡用功的同學,
但,最喜歡的,是對自己負責、努力享受人生享受追逐目標的同學。
任何一個你(妳),都可能是。



BP  2011.06.30

留言

這個網誌中的熱門文章

醫學健康跨領域合作的開始:資料工程

一直都很喜歡在會議上與跨領域的專家、醫師、學者分享我們在數據工程與分析應用上的發展經驗。 許多的專家學者,對於大數據應用的認知都仍侷限在一個超大型結構化資料集的子集合應用,在規劃好的條件設定下,針對特定的目標(疾病、行為)進行篩選,將數據narrow down到可以被個人電腦或是單一伺服器架構處理的小型資料集。 這樣的半手工處理方式,對於專一(Specific)領域主題的資料追蹤計算或許已經十分足夠,但當中倘若資料清理方式有改變、篩選條件增減,所有的數據都要從raw重新處理,不僅造成大量的時間與人力浪費,對於專案計畫進度的延宕更是麻煩。這些還不包含

Google 資料庫方案–Spreadsheet–(1)資料呈現

HEMiDEMi 的標籤: Google , Google SpreadSheet , 雲端 早在規劃『 教育,意義! 』project時, 便有打算將整個網站建立過程撰寫一篇教學,讓有興趣以google 服務為基礎進行開發的朋友參考。 沒想到這個想法擺著就拖了好幾個月, 好在學生提出了問題,就趁這機會寫一寫吧。 基本上『 教育,意義! 』網站的架構完全建立在Google提供的服務, 廣義來說也是個雲端的系統, 所有的資料是分散在不同的服務架構下,再用GAE, Javascrript將服務資訊串接起來, 由Blogspot 統一呈現。 省了租主機的費用,或架站的硬體、電費, 最好的地方在於不用管理主機維運的問題, 只要專心做我的創意、嘗鮮就好了!!   多棒! 若將『 教育,意義! 』網站依功能層次來分類,可以分為三層結構, 當中的層次與使用技術大致如下: UI 介面層 服務 : Blogspot (網站介面) , Picasa (相簿空間), Google Apps 技術 : Javascript , AJAX ( JQuery ) App應用層  服務 : Google App Engine (GAE) 技術 : Java, Java Server Page (JSP) 資料層 服務 : Google Docs (文件), Google Spreadsheet (試算表) 技術/函式庫 : Java, Google Data APIs 本篇文章將著重在介紹以Google Spreadsheet 做為雲端資料庫, 其他主題將會陸續推出。 若對Google API 與 Google App Engine 初步建置有興趣, 可以參考之前文章: 佛心來著的 Google Data API – for JAVA 雲端的開始:Netbeans 無痛 Google App Engine Java 服務開發 Google Spreadsheet 做為資料庫系統 對於小型的資料系統來說, 採用Google Spreadsheet做為應用程式資料庫(如問卷調查或線上系統) 也算堪用, 目前的儲存限制為 : 40 萬個儲存格 每張工作表最多...

歡迎引戰的Threads演算法機制

  最近受到江老師 江振維的啟發,開始測試Threads的演算法機制,發現它驚人的傳播速度 先講成果,一篇thread文: 第17小時,10,689瀏覽,106則回覆 第24小時,22,122瀏覽,179則回覆  帳號追蹤數僅104位  簡單來說,Threads的機制跟過去Facebook大多鎖定在親朋好友社交網絡之間的內容不一樣,它會大量收集有相關興趣的人來觸及,內容散亂主題分散觸及效果越差,但太過專業不是一般人能理解的效果會更差,所以主題明確直白淺顯易懂,可以快速激發討論的內容,就是容易被擴散的。 這次實驗做了一個策略,文章很簡單,短短三行: 『小朋友為什麼不能學ai?  學生交作業為什麼不能用ai?  為什麼要阻礙進化?』 (文章連結) 策略設計 用爭議性內容(Controversial topics)並參考坎寧安定律(Cunningham's Law)方式,讓主題有開放性討論(疑問句、ai)、敏感性主題(小朋友、學生),最後錨定一個負面且帶有爭議性的價值論述 (阻礙進化),來引發討論 每一個回文,都按愛心 回覆一人只回一次,不深追討論 回覆時回疑問句(諷刺、引戰),但不評斷價值 結果~~ 碰🔥  快速大量瀏覽以及對立式發言,中午時刻短短三小時擴增5000人瀏覽,當回覆互動增加時,會在一個短時間內快速吸人進來討論,直到24小時後觸及就自動下降幾乎歸零。 對比前後實驗的發文,專業文、分享文,效果都非常有限。 可以了解,在這樣同溫特化以及互動至上的平台,"引戰"對於流量製造的效果非常好,但是否能產生導流效果,不得而知,未來可以再嘗試☕ 最後,我自己還是不喜歡這種操作, 認真看待事物、追求專業、理想與和諧,這種人格特質,對於製造混亂、誘發對立討論,雖然還是可以引導教育意義,但互動過於浪費時間、缺少實質回饋、仇恨言論造成心理疙瘩,這都是自己不喜歡的特性😅 還是留給有心理素質的人去玩吧! XD PAN 20240704 Reference Berger, J., & Milkman, K. L. (2012). What Makes Online Content Viral? "Content that evokes high-arousal emotions such as awe, anger, and anxiet...